Dexmedetomidine–induced neuroprotection: is it translational?

Yunzhen Wang1,2, Ruquan Han2, and Zhiyi Zuo1

1Department of Anesthesiology, University of Virginia, Charlottesville, Virginia 22901, USA
2Department of Anesthesiology, Beijing Tian Tan Hospital, Capital Medical University, Beijing 100050, China

Abstract: Dexmedetomidine is often used in anesthesia and critical care medicine practice to sedate patients. Its neuroprotective effects have been shown in various ischemic and hemorrhagic brain injury models of animals. Randomized clinical trials have indicated that dexmedetomidine can improve outcome of patients under intensive care. Clinical trials are needed to determine whether dexmedetomidine can provide neuroprotection against ischemic and hemorrhagic stroke.

Key words: Dexmedetomidine; ischemic stroke; neuroprotection; ICU

Dexmedetomidine has become a commonly used drug in anesthesia and critical care medicine practice. The molar mass of dexmedetomidine is 200.28 g/mol with formula of C13H16N2. The generic name of dexmedetomidine is precedex or dexdor. It is a selective agonist of α2-adrenergic receptor with anxiolytic, sedative and analgesic effects. It provides sedation without inhibiting respiration. Patient can be cooperative or semi-arousal under the sedation with dexmedetomidine. Its main side-effects include bradycardia and hypotension, which can be treated pharmacologically. In this review, we will discuss the potential neuroprotective effects of dexmedetomidine.

Evidences from animal models

It has been reported that dexmedetomidine has neuroprotective effects in animals with various insults to the brain. Dexmedetomidine attenuates central sympathetic activity and decreases anesthetic requirements. Hoffman et al. determined the effects of dexmedetomidine on neurological and histopathological outcome after incomplete cerebral ischemia in rats about 25 years ago [1]. The results show that dexmedetomidine given during brain ischemia improved neurological and histopathological outcome after incomplete ischemia in rats anesthetized with fentanyl and nitrous oxide. This effect was reversed by atipamezole, indicating that the effect is mediated by α2-adrenergic receptors. Improvement with dexmedetomidine was not mediated by changes in plasma glucose or other physiologic variables during ischemia. It was concluded that dexmedetomidine decreased ischemic brain injury after incomplete cerebral ischemia by decreasing sympathetic activity. In another study with using a model of focal cerebral ischemia caused by occluding the left internal carotid, anterior and middle cerebral arteries for 2 h [2], rabbits received dexmedetomidine or normal saline 10 min after the occlusion. A plasma level of dexmedetomidine was maintained at 4.0 ± 0.15 ng/ml. The area of ischemic neuronal injury in the cortex was significantly decreased by about 47.6% in the group treated with dexmedetomidine. These results suggest that treatment with dexmedetomidine, at a dose to reduce the requirements of anesthetics by 50%, provides neuroprotection against focal cerebral ischemia.

Perinatal asphyxia can lead to death and severe disability. Brain hypoxia-ischemia (HI) injury is the major pathophysiology contributing to death and severe disability after perinatal asphyxia. Ren et al. studied the effects of dexmedetomidine on seven-day old Sprague Dawley rats with left
while providing adequate sedation as compared with lorazepam [5]. Total 106 adult medical and surgical ICU patients ventilated mechanically in 2 tertiary care centers were randomly assigned to two groups. They were sedated by dexmedetomidine or lorazepam for as long as 120 hours. Patients were assessed for delirium with using the Confusion Assessment Method for ICU patients twice daily. Patients sedated with dexmedetomidine had more coma-free or coma and delirium-free days and a lower prevalence of coma than sedation with lorazepam. More patients sedated with dexmedetomidine completed post-ICU neuropsychological testing and had similar scores in those tests assessing global cognitive, motor speed, and attention functions. In those ICU patients that were managed with individualized targeted sedation, dexmedetomidine infusion led to more coma- or coma and delirium-free days than with a lorazepam infusion at the targeted level of sedation.

Interestingly, it has been shown that benzodiazepines and α₂-adrenoceptor agonists the effects of benzodiazepines and α₂-adrenoceptor agonists on innate immunity and mortality in animals with infection may be different. Benzodiazepines impair neutrophil and macrophage functions [6, 7]. α₂-adrenoceptor agonists increase macrophage phagocytosis but have limited effects on neutrophil functions [8, 9]. Benzodiazepines increase the mortality of animals with infection [10] while α₂-adrenoceptor agonists improve mortality in animals with infection [11]. In a sub-analysis of the MENDS data, the authors compared the effect of dexmedetomidine with that of lorazepam on septic patients [12]. Among them, 63 patients had sepsis and 40 patients were without sepsis. Septic patients sedated with lorazepam had 3.2 more days with delirium/coma on average, 1.5 more days with delirium and more days requiring a ventilator. These protective effects of dexmedetomidine were enhanced in septic patients than patients without sepsis. Mortality at 28 days were reduced by 70% in septic patients sedated by dexmedetomidine as compared to the patients in the lorazepam group. A randomized, double-blinded, placebo-controlled trial was just published Lancet. The study determined the effectiveness of dexmedetomidine to prevent delirium in elderly patients after non-cardiac surgery [13]. Total 700 patients aged
65 years or older were assigned to receive either placebo or dexmedetomidine (0.1 μg/kg/h). The incidence of postoperative delirium was significantly lower in the dexmedetomidine group than in the placebo group. Regarding the safety, the incidence of hypertension and tachycardia were higher with placebo than with dexmedetomidine. Thus, it was concluded that a low-dose of dexmedetomidine significantly decreased the occurrence of delirium during the first 7 days after non-cardiac surgery in elderly ICU patients.

Potential mechanisms

As described above, dexmedetomidine can inhibit inflammation and decrease sympathetic activity via α2-adrenergic receptor activation. It also can activate some protective signal pathway, such as ERK and phosphoinositide 3-kinase (PI3K) /Akt pathway, to provide neuroprotection [14]. The activation of ERK by dexmedetomidine may be via mechanisms independent of α2-adrenergic receptor activation [15] (Figure 1).

In summary, dexmedetomidine can provide neuroprotection in animals with various insults to the brain. It appears that dexmedetomidine also improves neurological outcome in patients without primary neurological diseases. It improved neurological dysfunction, such as delirium, in mechanically ventilated patients and in elderly ICU patients after non-cardiac surgery. It also decreased mortality in septic patients. It is not known yet whether dexmedetomidine can provide neuroprotection against ischemia or hemorrhagic brain injury in human. Prospective clinical studies are needed to determine whether those effects shown in animals are translational in human.

Disclosure of Funding

Research in Dr. Zuo’s laboratory is currently supported by grants (GM098308 and AG047472) from the National Institutes of Health, Bethesda, MD, and the Robert M. Epstein Professorship endowment, University of Virginia, Charlottesville, VA.

Conflict Interests Disclosure: The authors have no conflicting interests to disclose.

Corresponding Authors: Zhiyi Zuo, MD, PhD Robert M. Epstein Professor of Anesthesiology, Professor of Neurological Surgery, and Neuroscience, University of Virginia. zz3c@virginia.edu; or Ruquan Han, MD, PhD, Professor and Chair, Department of Anesthesiology, Beijing Titan Hospital, Capital University. Tele: 86-10-67096660, Fax: 86-10-67031947, e-mail: ruquan.han@yahoo.com
References

